Fluids, electrolytes, nutrition in surgery

PSGS Review
Bonaventure Plaza, Greenhills, San Juan
3-5 PM; April 26, 2012
Case

- 62 y/o male
- Height=1.6 m, weight=52 kg, weight two months ago=60 kg
- Anorexia, vomiting; weight loss
- Diagnosis: head of pancreas cancer
- Referred for surgery:
- Labs: Hb=11, WBC=5600, N=60%, L=6%, platelet=240k; Na=135 mmol/L; K=3.2 mmol/L; glucose=160 mg/dL; BUN=6 mmol/L; albumin=3 gm/dL; creatinine=1.1 mg/dL
Questions

• Will you operate on this patient tomorrow?
• If you plan to build up – how?
 – Route? Duration? What to give?
• How will you know your build-up attempts are okay?
• During surgery:
 – Will you monitor the fluid input?
 – How will you give the fluids? Will you leave everything to the anesthesiologist?
 – What are your choices of fluids?
 – Will you place a jejunostomy?
Questions

• In the post-operative period:
 – Will you place an NGT?
 – Will you place drains?
 – Will you place on NPO? How long?
 – How often will you check the electrolytes? Glucose?
 – When will you start enteral feeding? Oral feeding?
 – How? When?
 – Will you give parenteral nutrition? When?
SURGERY BASICS
Essentials for wound healing

1. Homeostasis
 • Normal ECF and ICF
 • Optimum balance mechanisms
2. Optimum cell structure and function
3. Adequate energy provision
 • Optimum antioxidant activity
4. Adequate nutrition
 • Macronutrients
 • Micronutrients
5. Adequate perfusion
6. Adequate oxygenation
7. Adequate waste removal
Homeostasis

• Essential for optimum body function
• Fluids, electrolytes, acids and bases must be balanced
• Balance = a set desired level
 – More than desired level = increasing excretion
 – Below desired level = increasing absorption
Cell structure and function

Illustrations from Guyton’s Textbook of Physiology
The cell: basic components

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>70% to 85% except in fat cells</td>
</tr>
<tr>
<td>Ions</td>
<td>major → potassium, magnesium, phosphate, bicarbonate; minor → sodium, chloride and calcium</td>
</tr>
<tr>
<td>Protein</td>
<td>20% to 30% of cell mass</td>
</tr>
<tr>
<td></td>
<td>Structural</td>
</tr>
<tr>
<td></td>
<td>Functional</td>
</tr>
<tr>
<td>Lipids</td>
<td>(mainly phospholipids and cholesterol): 2% of cell mass</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>small part but has major role in metabolism</td>
</tr>
</tbody>
</table>
100 trillion cells

- Nervous system
- Musculoskeletal system
- Cardiovascular system
- Respiratory system
- Gastrointestinal system
- Genitourinary system
- Reproductive system
- Endocrine system
- Hemopoietic system
Body composition and water

Human body composition (% of weight):
- Water: 60%
 - ECF (extracellular fluid): 20%
 - Intravascular fluid
 - Extravascular interstitial fluid
 - ICF (intracellular fluid): 40%
- Mass: 40%
 - Lean body mass
 - Fat mass

TBF = ICF + ECF = 42 liters (60% of weight)
- ECF = 14 liters
 - Plasma
 - Interstitial Fluid
- ICF = 28 liters

• Computation of usual fluid requirement per day:
 - 30 ml/kg
 - or 1.5 to 2.5 L/day
Normal routes of water gain and loss at room temp (=23°C)

<table>
<thead>
<tr>
<th>Water intake</th>
<th>ml/day</th>
<th>Water loss</th>
<th>ml/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid</td>
<td>1200</td>
<td>Insensible</td>
<td>700</td>
</tr>
<tr>
<td>In Food</td>
<td>1000</td>
<td>Sweat</td>
<td>100</td>
</tr>
<tr>
<td>Metabolically produced from food</td>
<td>300</td>
<td>Feces</td>
<td>200</td>
</tr>
<tr>
<td>Total</td>
<td>2500</td>
<td>Urine</td>
<td>1500</td>
</tr>
</tbody>
</table>

Electrolytes

• Chemicals that can carry an electrical charge
• Dissolved in the body fluids
• Fluid and electrolyte levels are interdependent
 – Electrolyte increases, water is added
 – Electrolyte decreases, water is removed
Positive Ions

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>Extracellular mEq/L</th>
<th>Intracellular mEq/L</th>
<th>Function</th>
</tr>
</thead>
</table>
| Sodium | 142 | 10 | • Fluid balance
| | | | • Osmotic pressure |
| Potassium | 5 | 100 | • Neuromuscular excitability
| | | | • Acid base balance |
| Calcium | 5 | - | • Bones
| | | | • Blood clotting |
| Magnesium | 2 | 123 | • Enzymes |
| Total | 154 | 205 | |
Negative Ions

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>Extracellular mEq/L</th>
<th>Intracellular mEq/L</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>105</td>
<td>2</td>
<td>• Fluid balance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Osmotic pressure</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>24</td>
<td>8</td>
<td>• Acid base balance</td>
</tr>
<tr>
<td>Proteins</td>
<td>16</td>
<td>55</td>
<td>• Osmotic pressure</td>
</tr>
<tr>
<td>Phosphate</td>
<td>2</td>
<td>149</td>
<td>• Energy storage</td>
</tr>
<tr>
<td>Sulfate</td>
<td>1</td>
<td>-</td>
<td>• Protein metabolism</td>
</tr>
<tr>
<td>Total</td>
<td>154</td>
<td>205</td>
<td></td>
</tr>
</tbody>
</table>
Osmolality

• Normal cellular function requires normal serum osmolality
• Water homeostasis maintains serum osmolality
• The contributing factors to serum osmolality are: Na, glucose, and BUN
• Sodium is the major contributor (accounts for 90% of extracellular osmolality)
• Acute changes in serum osmolality will cause rapid changes in cell volume
How to compute for plasma osmolality

Osmolality = 2 x [Na] + [glucose]/18 + [BUN]/2.8

Na = 140 mmol/L
Glucose = 110 mg/dL
BUN = 20 mg/dL

Division of glucose and BUN by 18 and 2.8 converts these to mmol/L

Osmolality = (2x140) + (110/18) + (20/2.8)

Osmolality = 280 + 6.1 + 7.1

Osmolality = 293.2 mmol/L

(Normal = 275 to 295 mmol/L or mOsm/kg)
Regulation of Sodium and Water Balance

1. ADH
2. Sodium Reabsorbed
3. Sodium Excreted

- Adrenal Gland
- Kidney
- Aldosterone
- ANH
- Ureter
- Heart
Homeostasis needs energy

<table>
<thead>
<tr>
<th></th>
<th>ECF (mmol/L)</th>
<th>ICF (mmol/L)</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na+</td>
<td>140</td>
<td>10</td>
<td>Active transport</td>
</tr>
<tr>
<td>K+</td>
<td>4</td>
<td>140</td>
<td>Active transport</td>
</tr>
<tr>
<td>Ca++</td>
<td>2.5</td>
<td>0.1</td>
<td>Active transport</td>
</tr>
<tr>
<td>Mg++</td>
<td>1.5</td>
<td>30</td>
<td>Active transport</td>
</tr>
<tr>
<td>Cl-</td>
<td>100</td>
<td>4</td>
<td>Active transport</td>
</tr>
<tr>
<td>HCO3-</td>
<td>27</td>
<td>10</td>
<td>Active transport</td>
</tr>
<tr>
<td>PO4-</td>
<td>2</td>
<td>60</td>
<td>Active transport</td>
</tr>
<tr>
<td>Glucose</td>
<td>5.5</td>
<td>0-1</td>
<td>Facilitated diffusion</td>
</tr>
<tr>
<td>Protein</td>
<td>2 gm/dL</td>
<td>16 gm/dL</td>
<td>Active transport</td>
</tr>
</tbody>
</table>
Wound healing

Essentials:
1. Adequate protein
 - Essential / non-essential AA
2. Adequate carbohydrate
3. Adequate fat
 - Essential fatty acids
4. Adequate micronutrients
 - Vitamins
 - Trace elements

The inflammatory process

Cell injury, foreign body (virus, bacteria)

- Recognition: macrophage
- Bone marrow neutrophils
- Complement

- eicosanoids
- Cytokines

- T-cell defense
 Lymphoid system
- Antibody defense
 Humoral system

- eicosanoids
- eicosanoids

Resolution of the inflammatory process

Inadequate/inappropriate response/management lapse

Exacerbation of the inflammatory process
Inflammation
Energy requirements and antioxidants

- Glutathione reductase
- Glutathione peroxidase
- Superoxide dismutase
- Oxygen radicals
- Catalase
- Hydrogen peroxide
- Vitamin C

Chemical reactions:

- \(\text{Oxygen radicals} \rightarrow \text{Hydrogen peroxide} \rightarrow \text{Glutathione peroxidase} \rightarrow \text{Glutathione reductase} \)

References:

- Munoz C. Trace elements and immunity: Nutrition, immune functions and health; Euroconferences, Paris; June 9-10, 2005;
Wound healing

Basement membrane:
1. Cell support
2. Exchange
3. Transport
4. Development
5. Repair
6. Defense
7. Integrity of structure and environment

Intercellular environment
1. Tissue support/shape
2. Exchange
3. Growth
4. Repair
5. Defense
6. Movement
Wound healing

HEALING BY FIRST INTENTION
- Scab
- Neutrophils
- Clot

24 hours

HEALING BY SECOND INTENTION

3 to 7 days
- Mitoses
- Granulation tissue
- Macrophage
- Fibroblast
- New capillary

Weeks
- Fibrous union

Wound contraction

Inflammation: surgery

ADAPTED FROM:

Surgery induced immunosuppression

Surgical stress

↓ T-helper cells
↓ Cytotoxic T-cells
↓ NK cells
↓ IL2 receptor+ cells

↑ T-suppressor cells

↑ cortisol
↑ immuno-suppressive acidic protein?

↓ Lymphocyte number and function up to 2 weeks post-op

Surgery induced immunosuppression

1. \(\uparrow \text{CD16+ granulocytes express arginase 1} \)
 \[\downarrow \text{Plasma arginine by 50\%} \]

2. \(\downarrow \text{T-lymphocyte growth and function} \)

3. \(\downarrow \text{Impairment of Acquired Immunity} \)

References:
1. Bryk JA et al. J Trauma 2010
PRACTICAL SURGERY
Pre-operative checklist

• Check nutritional and fluid status (nutritional assessment)
• Check fluid and electrolyte status (=homeostasis):
 – Na, K, Cl (then may add Mg, Ca if needed)
 – Glucose, BUN, serum osmolality
 – Fluid intake and output record
• Wound healing capacity
 – Energy and protein requirements
 – Micronutrient requirements
 – Need for pharmaconutrition
1. DETECT MALNUTRITION
Nutrition screening & assessment

Nutrition screening

Nutritional assessment
Malnutrition and complications

Surgical patients

- 9% of moderately malnourished patients → major complications
- 42% of severely malnourished patients → major complications
- Severely malnourished patients are four times more likely to suffer postoperative complications than well-nourished patients

Detsky et al. *JPEN* 1987
Detsky et al. *JAMA* 1994
Malnutrition and complications

Malnutrition and cost

Malnutrition is associated with increased cost and the higher the risk the higher the number of complications plus cost

2. DETERMINE REQUIREMENTS
Nutrition Care Plan Form

Clinical Nutrition Services

NUTRITION CARE PLAN

Date Admitted

Room/Bed No.

File No.

PIN

Patient's Name (Last, First, Middle Name)

Weight (kg)

Age

Sex

Attending Physician

Actual Body Weight

Ideal Body Weight

Corrected Body Weight

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Data</th>
<th>Remarks/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Calorie Requirement</td>
<td>weight (kg)</td>
<td>kcal/day</td>
</tr>
<tr>
<td>Total Protein Requirement</td>
<td>weight (kg)</td>
<td>protein need</td>
</tr>
<tr>
<td>Electrolytes</td>
<td>Standard dose</td>
<td>Specific</td>
</tr>
<tr>
<td>Vitamin</td>
<td>Standard dose</td>
<td>Specific</td>
</tr>
<tr>
<td>Trace Elements</td>
<td>Standard dose</td>
<td>Specific</td>
</tr>
<tr>
<td>Pharmacological Nutritional Support</td>
<td>Glutamine</td>
<td>Standard dose</td>
</tr>
<tr>
<td>Formulation</td>
<td>Standard diet</td>
<td>Specific</td>
</tr>
<tr>
<td>Access/Route</td>
<td>Oral</td>
<td>Surgical Gastrostomy</td>
</tr>
<tr>
<td></td>
<td>PEG</td>
<td>Jejunostomy (surgical)</td>
</tr>
<tr>
<td>Standard Diet Specifics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delivery Method</td>
<td>Oral</td>
<td></td>
</tr>
<tr>
<td>Monitoring</td>
<td>Calorie count</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serum Albumin</td>
<td></td>
</tr>
</tbody>
</table>

Accomplished by:

[Signatures and Dates]
How much calories?

Usual: 20-25 kcal/kg/day

Very sick: 15-20 kcal/kg/day

Jeejeebhoy K. 4th Asia Pacific Parenteral Nutrition Workshop. June 7-9, 2009; Kuala Lumpur, Malaysia
Energy utilization – normal state

- Brain - glucose: 25% (400k)
- Heart - fat: 18% (280k)
- RBC - glucose: 3% (50k)
- Lungs - both: 3% (50k)
- Immune defense - glutamine: 2% (30k)
- Gastrointestinal tract - glutamine: 4% (65k)
- Skeletal muscles – both: 35% (480k)

Principles of Surgery, Schwartz, 17th ed, 1999

60 kg x 30 kcal/kg = 1600 kcal/day
How much protein?

How much carbohydrate and fat?

Carbohydrate- and Lipid-Oxidation during Sepsis

Carbohydrate-Oxidation

Lipid-Oxidation

- H.B. Stoner -

3. DETERMINE ROUTE OF FEEDING
Feeding algorithm

Can the GIT be used?

Yes

“Inability to use the GIT”

No

Parenteral nutrition

Oral

“inadequate intake”

< 75% intake

Short term

Long term

Peripheral PN

Central PN

Tube feed

More than 3-4 weeks

No

Yes

NGT

Gastrostomy

Jejunostomy

Nasoduodenal or nasojejunal

PRE-OPERATIVE PHASE

malnutrition

no

slight, moderate

severe

Scheduled
• esophageal resection
• gastrectomy
• pancreaticoduodenectomy

Enteral nutrition for 10-14 days

oral immunonutrition for 6-7 days

SURGERY

POST-OP

EARLY DAY 1 - 14

Early oral feeding within 7 days

yes

no

within 4 days

yes

“Fast Track”

no

Parenteral hypocaloric

Adequate calorie intake within 14 days

ENTRAL access (NCJ)

ental nutrition

immunonutrition for 6-7 days

Enteral access (NCJ)

Oral intake of energy requirements

yes

no

Combined enteral / parenteral

Oral intake of energy requirements

yes

no

supplemental enteral diet

no

yes
Surgical nutrition pathways: Pre-operative phase

Nutritional Assessment
- Normal to moderate malnutrition
- Severe Malnutrition
 - Condition: When oral or enteral feeding not possible
 - Esophageal resection
 - Gastrectomy
 - Pancreaticoduodenectomy

Parenteral nutrition + Omega-3-Fatty Acids + Antioxidants (+ glutamine); 6-7 days

SURGERY

Enteral nutrition

STOMACH

- Nasogastric tube
- PEG
- BUTTON
- PLG
- Witzel, Stamm, Janeway
- PSG
- PFG

JEJUNUM

- Nasojejunal tube
- PEJ
- JET-PEG
- PLJ
- NCJ
- PSJ
- PFJ

Loser C et al. ESPEN guidelines on artificial enteral nutrition – Percutaneous endoscopic gastrostomy (PEG)

\[E: \text{Endoscopic} \quad G: \text{Gastrostomy} \quad L: \text{Laparoscopic} \quad NC: \text{Needle Catheter} \quad S: \text{Sonographic} \quad F: \text{Fluoroscopic}\]
Parenteral nutrition

- Central PN
- Peripheral / peripheral central PN (PICC)

PICC = peripherally inserted central catheter
EARLY ENTERAL NUTRITION
Rationale

• Enteral feeding 24 to 72 hours after surgery or when patient is hemodynamically stable
• Provide nutrients required during metabolic stress
• Maintain GI integrity
• Reduce morbidity compared with parenteral nutrition
• Reduce cost compared with parenteral nutrition
Early enteral nutrition vs standard nutritional support on mortality

Comparison: mortality
Outcome: early enteral nutrition vs. control

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerra et al 1990</td>
<td>1/11</td>
<td>1/9</td>
</tr>
<tr>
<td>Gottschlich et al, 1990</td>
<td>2/17</td>
<td>1/14</td>
</tr>
<tr>
<td>Brown et al, 1994</td>
<td>0/19</td>
<td>0/18</td>
</tr>
<tr>
<td>Moore et al, 1994</td>
<td>1/51</td>
<td>2/47</td>
</tr>
<tr>
<td>Bower et al, 1996</td>
<td>24/163</td>
<td>12/143</td>
</tr>
<tr>
<td>Kudsk et al, 1996</td>
<td>1/16</td>
<td>1/17</td>
</tr>
<tr>
<td>Ross Products, 1996</td>
<td>20/87</td>
<td>8/83</td>
</tr>
<tr>
<td>Engel et al, 1997</td>
<td>7/18</td>
<td>5/18</td>
</tr>
<tr>
<td>Mendez et al, 1997</td>
<td>1/22</td>
<td>1/21</td>
</tr>
<tr>
<td>Rodrigo et al, 1997</td>
<td>2/16</td>
<td>2/13</td>
</tr>
<tr>
<td>Weimann et al, 1998</td>
<td>2/16</td>
<td>4/13</td>
</tr>
<tr>
<td>Atkinson et al, 1998</td>
<td>96/197</td>
<td>86/193</td>
</tr>
<tr>
<td>Galban et al, 2000</td>
<td>17/89</td>
<td>28/87</td>
</tr>
</tbody>
</table>

Pooled Risk Ratio

Heyland et al. JAMA, 2001
4. DETERMINE ADEQUACY OF INTAKE
Calorie Count

Nutrition and Fluid Balance Sheet

<table>
<thead>
<tr>
<th>Date</th>
<th>Unit</th>
<th>Oral</th>
<th>Enteral</th>
<th>Tube Flush</th>
<th>Parenteral</th>
<th>IV Dex</th>
<th>IVF2</th>
<th>Others</th>
<th>Total Intake</th>
</tr>
</thead>
</table>

Fluid Output Record

<table>
<thead>
<tr>
<th>Date</th>
<th>Unit</th>
<th>Urine</th>
<th>Drain1</th>
<th>Drain2</th>
<th>Stool</th>
<th>Insensible</th>
<th>Total Output</th>
<th>Fluid Balance</th>
</tr>
</thead>
</table>

Calorie Intake Record

<table>
<thead>
<tr>
<th>Date</th>
<th>Unit</th>
<th>Oral Calorie</th>
<th>Enteral Calorie</th>
<th>Parenteral Calorie</th>
<th>IVDex Calorie</th>
<th>Others</th>
<th>Total Calories</th>
<th>TCR</th>
<th>Calorie Balance</th>
</tr>
</thead>
</table>

Protein Intake Record

<table>
<thead>
<tr>
<th>Date</th>
<th>Unit</th>
<th>Oral Protein</th>
<th>Enteral Protein</th>
<th>Parenteral Protein</th>
<th>Others</th>
<th>Total Protein</th>
<th>TPR</th>
<th>Protein Balance</th>
</tr>
</thead>
</table>

CALORIE MONITORING FORM

<table>
<thead>
<tr>
<th>Date and Shift</th>
<th>Nutrient Source</th>
<th>Calorie Intake</th>
<th>TCR</th>
<th>% Calorie Intake</th>
<th>Protein Intake</th>
<th>TPR</th>
<th>% Protein Intake</th>
<th>Total Fluid Intake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>Tube Feed</td>
<td>IV Dextrose</td>
<td>Parenteral</td>
<td>TOTAL</td>
<td>Oral</td>
<td>Tube Feed</td>
<td>IV Dextrose</td>
<td>Parenteral</td>
</tr>
<tr>
<td>Oral</td>
<td>Tube Feed</td>
<td>IV Dextrose</td>
<td>Parenteral</td>
<td>TOTAL</td>
<td>Oral</td>
<td>Tube Feed</td>
<td>IV Dextrose</td>
<td>Parenteral</td>
</tr>
<tr>
<td>Oral</td>
<td>Tube Feed</td>
<td>IV Dextrose</td>
<td>Parenteral</td>
<td>TOTAL</td>
<td>Oral</td>
<td>Tube Feed</td>
<td>IV Dextrose</td>
<td>Parenteral</td>
</tr>
</tbody>
</table>
Monitor actual nutrient intake

<table>
<thead>
<tr>
<th>Date And Shift</th>
<th>Nutrient Source</th>
<th>Calorie Intake</th>
<th>TCR</th>
<th>% Calorie Intake</th>
<th>Protein Intake</th>
<th>TPR</th>
<th>% Protein Intake</th>
<th>Total Fluid Intake</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1/07</td>
<td>Oral</td>
<td>900</td>
<td>1600 kcal</td>
<td>72%</td>
<td>36</td>
<td>52 g</td>
<td>69%</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>Tube Feed</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1240</td>
</tr>
<tr>
<td></td>
<td>IV Dextrose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parenteral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>1150 kcal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2340 ml</td>
</tr>
<tr>
<td>2/3/07</td>
<td>Oral</td>
<td>200</td>
<td>1600 kcal</td>
<td>84%</td>
<td>8</td>
<td>52 g</td>
<td>135%</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Tube Feed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>IV Dextrose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parenteral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1440 ml</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>1350 kcal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/6/07</td>
<td>Oral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tube Feed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV Dextrose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parenteral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effect of nutrition intake on outcome

Nutrition care led to reduced morbidity and mortality of surgical patients assessed as severely malnourished and high risk (n=103)

Intra-operative checklist

• Fluid intake
 – Monitor and estimate fluid losses
 – Only infuse what is required
 – Determine whether to give balanced electrolyte solutions or colloids; avoid saline and “water only” infusions like D5W or D10W

• Nutrition access
 – Determine the need for long term enteral nutrition (jejunostomy: surgical jejunostomy or nasojejunostomy)
How much fluid loss in surgery?

<table>
<thead>
<tr>
<th>Fluid Loss</th>
<th>Description</th>
<th>60 kg wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insensible perspiration</td>
<td>Ventilation with 100% water = almost zero loss</td>
<td>0 ml</td>
</tr>
</tbody>
</table>
| Evaporative loss | • moderate incisions with partly exposed but non-exteriorised viscera = 8.0 ml/hour
 • major incisions with completely exposed and exteriorised viscera = 32.2 ml/hour | 8-30 ml per hr |
| Third space loss | • Ascites or other fluids – measurable | • Measure
 • Volumes up to 15 mL/kg/hour are recommended in the first hour of abdominal surgery, with decreasing volumes in subsequent hours. | • 300 ml |
| Total | • Within one hour (crystalloids not recommended) | 350 first hour |

Which fluid is the most appropriate?

<table>
<thead>
<tr>
<th></th>
<th>Plasma</th>
<th>0.9% Saline</th>
<th>Hartmann’s</th>
<th>Sterofundin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>135-145</td>
<td>154</td>
<td>131</td>
<td>140</td>
</tr>
<tr>
<td>K</td>
<td>3.5-5.3</td>
<td>-</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Ca</td>
<td>2.2-2.6</td>
<td>-</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>Mg</td>
<td>0.7-1.2</td>
<td>-</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cl</td>
<td>95-105</td>
<td>154</td>
<td>111</td>
<td>127</td>
</tr>
<tr>
<td>Bicarb precursor</td>
<td>24-32</td>
<td>-</td>
<td>Lactate 29</td>
<td>Acetate 24 Malate 5</td>
</tr>
<tr>
<td>Na:Cl ratio</td>
<td>1.28-1.45:1</td>
<td>1:1</td>
<td>1.18:1</td>
<td>1.43:1</td>
</tr>
<tr>
<td>Osmolality</td>
<td>275-295</td>
<td>308</td>
<td>276</td>
<td>294</td>
</tr>
</tbody>
</table>
Fluid management

<table>
<thead>
<tr>
<th>Use</th>
<th>Compartment</th>
<th>Composition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume Replacement</td>
<td>Intravascular fluid volume</td>
<td>Iso-oncotic</td>
<td>6% HES 130 in balanced solution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isotonic Iso-ionic</td>
<td></td>
</tr>
<tr>
<td>Fluid Replacement</td>
<td>Extracellular fluid volume</td>
<td>Isotonic Iso-ionic</td>
<td>Balanced solution: normal saline; ringer’s lactate</td>
</tr>
<tr>
<td>Electrolyte or osmotherapy (solutions for correction)</td>
<td>Total body fluid volume</td>
<td>According to need for correction</td>
<td>KCL Glucose 5% Mannitol</td>
</tr>
</tbody>
</table>

Reference: Zander R, Adams Ha, Boldt J. 2005; 40; 701-719
Post-operative checklist

• Fluids and electrolytes
 – Daily accumulated fluid balance
 – Goal: “zero” fluid balance
 – Serum electrolytes
 – Give balanced electrolyte solutions

• Adequacy of nutrient intake
 – Early enteral nutrition
 – Daily nutrient balance (=nutrient intake)
 – Good glucose control
SURGICAL COMPLICATIONS
Common peri-operative surgical complications

- Fluid and electrolyte problems
- Wound infection and sepsis
- Wound dehiscence
Fluid management

• Average perioperative fluid infusion:
 – Intra-op = 3.5 to 7 liters
 – 3 liters/day for the next 3 to 4 days
 – Average gain post-op = 3 to 6 kg weight gain

• Leads to:
 – Delay of gastrointestinal function
 – Impair wound anastomosis healing
 – Affects tissue oxygenation
 – Prolonged hospital stay

Fluid and electrolyte imbalance

INJURY = SURGERY

- **Inflammatory mediators**
 - ↑K+ release from cells
 - ↓K+ and ↑ Na intracellular
 - Sick cell syndrome of critical illness

- ↑vasodilation effect of anesthetic agents
 - ↑albumin escape from intravascular space

- ↑hypotonic fluid infusion
 - 90% cause of hyponatremia in surgery

Fluid Retention + Electrolyte Imbalance

Ileus and dehiscence

Salt and water overload

↑ in intra-abdominal pressure

↓ in mesentery blood flow

STAT3 activation

↓ in myosin phosphorylation

↓ in muscle contractility

ILEUS

Intestinal edema

↓ in tissue OH-proline

Impaired wound healing

DEHISCENCE

Anastomosis leak

• Points to bowel preparation:
 – meta-analyses show that bowel preparation is not beneficial
 – in elective colonic surgery, and 2 smaller recent RCTs suggest that it increases the risk for anastomotic leak
 – Promote longer ileus duration

• Points to fluid management

What is the worst fluid to give?

<table>
<thead>
<tr>
<th></th>
<th>Plasma</th>
<th>0.9% saline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na (mmol/L)</td>
<td>135 – 145</td>
<td>154</td>
</tr>
<tr>
<td>Cl (mmol/L)</td>
<td>95 – 105</td>
<td>154</td>
</tr>
<tr>
<td>K (mmol/L)</td>
<td>3.5 – 5.3</td>
<td>0</td>
</tr>
<tr>
<td>HCO\textsubscript{3} (mmol/L)</td>
<td>24 – 32</td>
<td>0</td>
</tr>
<tr>
<td>Osmolality (mOsm/kg)</td>
<td>275 – 295</td>
<td>308</td>
</tr>
<tr>
<td>pH</td>
<td>7.35 – 7.45</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Inflammation: surgery

ADAPTED FROM:

Inflammation: sepsis

Inflammation & organ failure in the ICU

SIRS
- TNFα, IL-1β, IL-6, IL-12, IFNγ, IL-3
- Tissue inflammation, Early organ failure and death

CARS
- IL-10, IL-4, IL-1ra, Monocyte HLA-DR suppression
- Immunosuppression
- 2nd Infections
- Delayed MOF and death

Goal of nutrition/pharmaceutical nutrition

Inflammation & organ failure in the ICU

SIRS
TNFα, IL-1β, IL-6, IL-12, IFNγ, IL-3

Tissue inflammation, Early organ failure and death

PRO
Inflammatory balance

ANTI

Inflamatory balance

Days

weeks

Goal of nutrition/pharmaconutrition

1. Early enteral nutrition
2. Supplement with parenteral nutrition
3. Pharmaconutrition: Fish oils and glutamine
4. Zero fluid balance

Sarcopenia in elderly

Sarcopenia: Vandewoude M. Abbott Symposium, ESPEN 2011, Göteborg, Sweden
Sarcopenia in elderly

1. Early enteral nutrition
2. Supplement with parenteral nutrition
3. Adequate nutrient intake
4. Pharmaconutrition: Fish oils and glutamine
5. Zero fluid balance
Cancer Cachexia

- TUMOR
 - ↓ intake/obstruction
 - PIF → proteolysis
 - LMF → lipolysis

- BODY
 - WBC → Cytokines →
 - ↓ Appetite
 - ↑ Satiety
 - Cell ischemia
 - Cell destruction
 - ↑ inflammation

- WEIGHT LOSS
 - CACHEXIA

Cancer Cachexia

1. Early enteral nutrition
2. Supplement with parenteral nutrition
3. Adequate nutrient intake
4. Pharmaconutrition: Fish oils and glutamine
5. Zero fluid balance

ANSWERS
Surgical case

• 62 y/o male
• Height=1.6 m, weight=52 kg, weight two months ago=60 kg
• Anorexia, vomiting; weight loss
• Diagnosis: head of pancreas cancer
• Referred for surgery:
• Labs: Hb=11, WBC=5600, N=60%, L=6%, platelet=240k; Na=135 mmol/L; K=3.2 mmol/L; glucose=160 mg/dL; BUN=6 mmol/L; albumin=3 gm/dL; creatinine=1.1 mg/dL
Questions

• Will you operate on this patient tomorrow?
 – Yes if emergency needed, but needs intraop enteral access and will give early enteral nutrition
 – No; optimize patient through nutrition and fluid management
Available data

- BMI=21
- Weight loss in two months=13%
- Cancer, head of pancreas
- Albumin=3 gm/dL
- Total lymphocyte count (TLC)=336
- Na=135, K=3.2
- Compute for the osmolality
 - \([2 \times 135] + [160/18] + [6] = 284.8 \text{ mOsm/kg H}_2\text{O}\)
Question

• If you plan to build up the patient how?
Build up

• Total fluid (ml)/day = 52 kg x 30 ml/day = 1560-1600 ml/day
• Total calories/day = 52 kg x 30 kcal/day = 1560 kcal/day
• Total protein/day = 52 kg x 1.5 gm/day = 78 gm/day
• Total carbo and fat: get the non-protein calories: 1560 – (78x4kcal/gm) = 1248 NPC
 – Carbo (60%): 1248 x 0.60 = 748.8 kcal/(4kcal/g) = 187 gm
 – Fat (40%): 1248 x 0.40 = 499.2 kcal/(9kcal/g) = 55.5 gm
• Vitamins and trace elements?
Build up

• What is the route?
 – Oral? Tube feed? Parenteral nutrition? Combination?

• Duration of build up?

• How to ensure adequate intake?
 – Measure calorie count daily
 – Monitor and ensure normalization of the electrolyte and fluid status
Build up

• What are the indicators of build up success?
 – Normalization of abnormal values?
 • TLC? Albumin? Na? K?
 – “zero” fluid balance?
 – Adequate nutrition intake?
Intra-operative

• Will you monitor the fluid input?
• How much fluid loss do you expect?
 – Will you leave everything to the anesthesiologist?
• What are your choices of fluids?
• Will you place a jejunostomy?
Post-operative

• Will you place an NGT?
• Will you place drains?
• How will you monitor the post-op course?
 – Will you place on NPO? How long?
 – How often will you check the electrolytes? Glucose?
• When will you start enteral feeding? Oral feeding?
 – How? When?
• Will you give parenteral nutrition?
Take home message

• Fluid and nutritional status
• Fluid and electrolyte balance
• Nutrient balance/adequate nutrient intake
THANK YOU